Operation and Maintenance Manual
ADCAT™ 3-WAY (NSCR) Catalyst for NOx, CO and VOC

Manufactured By:
EmeraChem, LLC
1729 Louisville Dr.
Knoxville, TN 37921
Tel.: 865.246.3000
Fax: 865.246.3001
TABLE OF CONTENTS

1. **INTRODUCTION** .. 5
2. **PROCESS DESCRIPTION** ... 5
3. **EQUIPMENT DESCRIPTION** ... 7
 3.1. Catalyst Modules ... 7
 3.2. Gaskets ... 9
4. **CATALYST OPERATION AND PERFORMANCE** .. 9
 4.1. Oxygen Content of Gas into the Catalyst ... 9
 4.2. Exhaust Gas Temperature ... 12
 4.3. Pressure Drop Across Catalyst .. 13
 4.4. Catalyst Masking and Poisoning Agents.. 13
5. **CATALYST STORAGE INSTRUCTIONS** ... 13
6. **INSTALLATION** .. 14
 6.1. Pre-Installation Instructions for Catalyst Element 14
 6.2. Installation Instructions for Catalyst Element ... 14
7. **SAFETY CONSIDERATIONS** ... 15
8. **OPERATION LOG** .. 17
9. **CATALYST DEACTIVATION & MAINTENANCE** ... 17
 9.1. Catalyst Inspections .. 18
 9.2. Catalyst Masking ... 19
 9.3. Catalyst Fouling ... 20
 9.4. Catalyst Poisoning ... 20
 9.5. Catalyst Thermal Deactivation ... 21
 9.6. Catalyst Cleaning .. 22
10. **TROUBLESHOOTING** .. 23
 10.1. Air Fuel Ratio Controller Issues ... 23
 10.2. Engine Related Issues ... 23
 10.2.1. Ignition System Misfire .. 23
 10.2.2. Leaking Exhaust Valve ... 24
 10.2.3. Low Compression ... 24
 10.2.4. Low Load .. 24
 10.2.5. Exhaust Leak .. 24
 10.2.6. Detonation .. 24
 10.2.7. Improper crankcase routing .. 24
11. **REVISIONS AND CHANGES** ... 24
INDEX OF TERMS

ADCAT™ 3-WAY (NSCR) - EmeraChem’s proprietary non-selective catalytic reduction product for removing NOx/CO/VOC

AFR – Air-to-fuel ratio.

AFRC – Air-to-fuel ratio controller for a rich burn engine.

Catalyst - A substance that changes the rate of a chemical reaction but emerges from the process unchanged

CO – Carbon monoxide

CO₂ – Carbon dioxide

CPSI – Cells per square inch, the measure of cell density

DRE – Destruction and removal efficiency, expressed as a percent.

EGO – Exhaust gas oxygen (analyzer)

Module – A catalyst element; a canister containing catalyzed metal substrate.

NMNEHC – Non-methane, non-ethane hydrocarbons; part of the regulatory definition of VOCs.

NOx - Nitrogen Oxide, composed predominantly of NO and NO₂, and includes other compounds.

O₂ – Oxygen

PPM – Parts per million; a measure of concentration.

PPMVD – Parts per million by volume, dry.

PPMVDC – Parts per million by volume, dry, corrected to a specific oxygen concentration.

SCFH – Standard cubic feet per hour

SO₂ – Sulfur dioxide

SO₃ – Sulfur trioxide

Space Velocity – A measure of the amount of exhaust gas one cubic foot of catalyst can process to achieve a specific level of performance for a specific...
compound. Calculated by dividing the volumetric flow rate of exhaust gas (in standard cubic feet per hour) by the number of cubic feet of catalyst; expressed as 1/hr.

Substrate – A high temperature, metal, multi-cellular monolithic structure onto which the catalyst coating is applied.

UHC – Unburned hydrocarbons.

VOC – Volatile organic compounds.
1. INTRODUCTION
Thank you for purchasing EmeraChem’s field proven ADCAT™ 3-Way (NSCR) catalyst for reduction of NOx, CO and VOCs. This document provides operation guidelines for the catalyst system, including an overview of the catalytic process, installation of the catalyst, system operation, and catalyst maintenance.

Instrumentation needed to operate and maintain the ADCAT™ 3-Way (NSCR) catalyst system but not provided by EmeraChem is also discussed.

2. PROCESS DESCRIPTION
An NSCR catalyst system reduces NOx, CO, and hydrocarbon VOC emissions from a rich-burn engine. The catalyst chemistry requires that the engine’s air-to-fuel ratio (AFR) is near stoichiometric (~14.7 to 1). If a rich-burn engine is tuned strictly for power performance, then oxygen will be in the 1% to 3% range. At this AFR the engine will be running hot for maximum efficiency. The high temperature and the relatively high oxygen content in the exhaust will produce low CO and hydrocarbon emissions but NOx emissions. This condition is not optimal for emission control using a 3-way NSCR catalyst.

When using a 3-way NSCR system, the engine must be operated richer so that an increase in reducing agents (CO and hydrocarbons) occurs. In addition, the NSCR must be operated at a temperature adequate to accomplish NOx reduction, typically at least 750°F and preferably between 900 and 1150°F. The exhaust gas undergoes dozens of chemical reactions within the catalyst. A couple of the oxidation reactions can be summarized as follows:

\[2\text{CO} + \text{O}_2 = 2\text{CO}_2\]

\[\text{HC} + \text{O}_2 = \text{CO}_2 + \text{H}_2\text{O}\]

A couple of the reduction reactions may be summarized as follows:
\[
\begin{align*}
\text{NO} + 2\text{CO} &= \text{N}_2 + 2\text{CO}_2 \\
\text{NO}_x + \text{CH}_4 &= \text{N}_2 + \text{CO}_2 + \text{H}_2\text{O} \\
\text{HC} + \text{H}_2\text{O} &= \text{H}_2 + \text{CO}_2 \\
\text{CO} + \text{H}_2\text{O} &= \text{CO}_2 + \text{H}_2 \\
2\text{NO} + 2\text{H}_2 &= \text{N}_2 + 2\text{H}_2\text{O}
\end{align*}
\]

Notice the importance of having CO and hydrocarbons present in the exhaust to react with the NOx and reduce it to elemental nitrogen (N\(_2\)). If there is too much oxygen in the exhaust, the preferential reaction in the catalytic converter is the oxidation of CO or hydrocarbon rather than the reduction of NOx. Therefore, to operate an efficient NSCR catalyst the oxygen concentration should always be less than 1%, and preferably under 0.5%.

The air-to-fuel ratio controller (AFRC) typically uses an oxygen sensor placed in the exhaust stream near the catalyst inlet as a feedback signal to keep the AFR at the optimum set point. The sensor is particularly sensitive to oxygen concentrations below 1%. Basic AFRCs are single-point controllers and are capable of controlling the air-fuel ratio (and the emissions) at only one engine load point, fuel type, ambient temperature, etc. More advanced AFRCs are capable of controlling the air-fuel ratio (and the emissions) at 9, 64, or even higher numbers of engine loads and operating conditions.

Some conditions that can reduce catalytic activity over time are thermal degradation, poisoning, or masking. These are discussed later. Thermal degradation is caused by sintering of the wash coat, which closes the pores, thereby reducing catalyst surface area. Sintering can occur slowly over time, or quickly if the catalyst is operated at a temperature that is too high. Too much sulfur or phosphate in the
engine oil or fuel can cause poisoning of the catalyst. Masking occurs when soot is deposited on the catalyst because the engine is burning oil.

3. EQUIPMENT DESCRIPTION
The ADCAT™ 3-WAY (NSCR) catalyst system consists of one or more catalyst modules (operated in series or in parallel) sealed against the catalyst housing using a high-temperature gasket to prevent gas bypass.

3.1. Catalyst Modules
The EmeraChem ADCAT™ NSCR catalyst coating is applied to a substrate. The substrate is a high-temperature, metal, multi-cellular monolithic structure. This substrate structure is created using a stainless-steel alloy foil, approximately 0.002 inches thick. The module is created by alternating layers of flat foil and corrugated foil to form discrete cells. The layers are layered within a stainless steel frame to form a honeycomb core. A typical NSCR catalyst module will have on average 300 cells per square inch (cpsi), although higher cell densities are sometimes used to increase the surface area. Figure 1 further illustrates the concept of cell density, showing 100 cpsi as an example.

![Figure 1: Visual Example of Cell Count: 100 Cells per Square Inch](image)
Figure 2 below shows a close up picture of a metal substrate, further illustrating the previously described honeycomb cell structure. Please note that EmeraChem is able to vary the cell size and cell density to achieve site-specific performance and back pressure requirements.

![Figure 2: Catalyst Module Close-up, Illustrating Honeycomb Cell Structure](image)

Next, the assembled substrate module is oxidized at a high temperature, where diffusion bonding occurs fusing the foil layers together making the uncoated substrate rigid and strong. (When requested, EmeraChem adds a brazing flux during the assembly process to further fuse the foil layers together.) For round and octagonal module configurations, anti-telescoping bars are welded onto the inlet and outlet faces of the modules to resist the pressure of back-fires.

The completed, bonded substrate is then coated with a high surface area, stabilized alumina wash coat designed to distribute and disperse the catalytic component, and high activity platinum group metals (PGM) consisting of a proprietary combination of platinum (Pt), palladium (Pd) and rhodium (Rh).
3.2. Gaskets
A single type of gasket is used in EmeraChem’s ADCAT™ 3-Way (NSCR) Catalyst system. These gaskets are made from high-temperature fiberglass material, capable of withstanding temperatures over 1,100 °F. The purpose of the gasket is to seal between the catalyst modules and the mounting surface of the housing. Since the gaskets are made of fiberglass, proper breathing apparatus and gloves must be used during installation. Please see Appendix D, MSDS for more information.

4. CATALYST OPERATION AND PERFORMANCE
While in operation, the catalytic converter provides simultaneous conversion of NOx, CO, NMNEHC and formaldehyde (CH₂O) exhaust emissions on rich burn natural gas engines. In general, for optimum catalyst performance the exhaust oxygen must be maintained within 0.3% to 0.5% by volume and the catalyst inlet temperature must be maintained within the range of 900°F to 1150°F. Bypass must be eliminated to achieve emission compliance. A seal must be properly specified and installed to prevent bypass between the catalyst module and the housing.

As a minimum requirement, the following parameters are chosen as performance indicators because they directly affect the performance of an NSCR catalyst: oxygen content of the exhaust gas, exhaust gas temperature, and pressure drop across the catalyst.

4.1. Oxygen Content of Gas into the Catalyst
Maximum NSCR catalyst performance can only take place over a narrow range of oxygen concentration. Therefore, the oxygen content of the engine exhaust gas is the single most important factor for achieving maximum catalyst performance and the best indicator of emission compliance. Oxygen content
indicates whether the engine is running as rich as is required for proper performance of the NSCR (typically exhaust gas oxygen less than 0.5%).

![Figure 3: NSCR Catalyst Performance Sensitivity to AFR](image)

Oxygen content is typically measured using an oxygen sensor that creates an output voltage inversely proportionally to the oxygen content. The output voltage range (typically 0.1 to 0.9 volts in conditions above 650°F) is site-specific and must be set by using an exhaust gas analyzer to determine the set-point voltage that results in the best emission performance.

In normal operation, the output voltage will oscillate around the set point and the AFRC will adjust the step motor to bring the voltage back toward the set-point. When the voltage is above the set-point, the system is richer than desired, and the stepper position is increased to further restrict fuel flow to the carburetor.
Conversely, when the sensor voltage is below the set-point, the system is leaner than desired, and the stepper position is decreased to increase fuel flow. In most cases, an alarm will be triggered if the position of a stepper valve is at the minimum travel limit (indicating the engine is too rich and the controller cannot close the valve any further) or maximum travel limit (indicating that the engine is too lean and the controller cannot open the valve any further to enrich the mixture).

The setup of an NSCR catalytic emission control system is done with an exhaust gas analyzer with appropriate calibration span gas. The analyzer enables the operator to accurately determine the engine air/fuel ratio that delivers maximum catalyst performance.

The minimum requirement is to monitor oxygen content of the exhaust gas at the inlet to the catalyst with a range of less than 0.5%. Since oxygen content is not displayed directly, each of the following options are considered to satisfy minimum requirement:

Option 1: Use a portable analyzer to determine the voltage range that results in compliance with permit emission limits and oxygen content of less than 0.5%. The determination should be repeated whenever the oxygen sensor is replaced.

- Utilize an alarm system that can notify a field office when the AFRC is unable to bring the voltage back to the set-point, as indicated by the alarm sounding for a significant period of time (such as 30 minutes). Such excursions should trigger a site visit, corrective action, logging, and reporting in the semiannual reports, or,
• Manually record the voltage daily during workdays to show that it remains within the predetermined range. Excursions should trigger corrective action, logging, and reporting in the semiannual reports.

Option 2: Use a portable analyzer to determine oxygen content range that results in compliance with permit emission limits and oxygen content of less than 0.5%. The determination should be repeated whenever the oxygen sensor is replaced. Between replacements, use a portable analyzer to measure oxygen content monthly to show that it remains within the predetermined range. Excursions should trigger corrective action, logging, and reporting in the semiannual reports.

4.2. Exhaust Gas Temperature
The catalytic activity of an NSCR catalyst is dependent on its operating temperature. Too low and the catalytic activity is low – too high and the catalyst can be damaged. The exhaust gas from a four-stroke rich-burn stationary reciprocating engine, measured at the NSCR catalyst inlet, should be between 900°F and 1150°F for optimal catalyst performance.

Catalytic conversion produces an exothermic reaction (releases heat and increases temperature) as a result of oxidizing carbon monoxide and hydrocarbons. The magnitude of temperature rise is dependent on the amount of carbon monoxide (CO) and hydrocarbons (HC) oxidized. Under normal engine operation, the catalyst exothermic temperature rise is 50 - 75°F for NSCR catalysts.
Excessive temperature can cause sintering, which is discussed below. Sintering can occur quickly if the catalyst is operated at a temperature that is too high, and the damage to the catalyst unit can lower or eliminate its effectiveness.

4.3. Pressure Drop Across Catalyst
A pressure drop that deviates by more than 2 inches of water from the pressure drop measured during the initial performance test indicates that the catalyst may be damaged or fouled. For fresh catalyst or reinstalled catalyst, a pressure drop reading is required immediately after the installation, and this reading should be recorded and used as the baseline for evaluating the catalyst.

4.4. Catalyst Masking and Poisoning Agents
The following contaminants are known catalyst deactivators and contribute to shortened catalyst life: heavy and base metals such as lead, mercury, arsenic, antimony, sodium, potassium, lithium, zinc, copper, tin, iron, nickel and chrome; sulfur, silicon, phosphorous and fluorine, chlorine, bromine and iodine. Hence, the contents of these contaminants in the catalyst must not singularly or collectively accumulate to such a level that exceeds 350mg/m³ or 10 mg/ft³ of catalyst as determined by ICP-OES (inductive couple plasma - optical emissions spectroscopy) or glow discharge mass spectrophotometry. The presence levels of these contaminants void the warranty, unless otherwise expressly agreed to in writing by Seller.

5. CATALYST STORAGE INSTRUCTIONS
Upon delivery, the catalyst should be stored in a clean, dry place with protection from rain, snow, dust, welding fumes, and any physical threats that could damage or deform the substrate cell structure. Dropping, crushing or deforming the substrate cell structure could effect performance. Due to the value of the precious metals on
the catalyst elements, consideration should be taken for security. Failure to adequately follow these procedures may void the catalyst warranty.

6. INSTALLATION

6.1. Pre-Installation Instructions for Catalyst Element

- New or rebuilt engines must be operated at normal operating load and temperature for a minimum of 72 hours prior to installing the catalyst element into the housing. This break-in cycle allows time for proper seating of piston rings and valves, and minimizes the catalyst’s exposure to contaminants including potential oil aerosols and excessive masking agents.

CAUTION: Failure to observe break-in requirement will void the catalyst warranty.

- Pre-calibrate the AFRC during the break-in period using a portable exhaust gas analyzer.
- Perform emission test to confirm proper pre-catalyst emissions.
- Confirm proper exhaust temperature for catalyst operation;

6.2. Installation Instructions for Catalyst Element

Note: Installation instructions will vary with the design of the housing, the type of gasket specified by the housing manufacturer, and the housing’s catalyst hold-down system. Please refer to the housing manufacturer’s manual for detailed catalyst installation instructions.

- Install the supplied ½” threaded lifting eye bolt in the recessed nut on the catalyst band. The purpose of this eye bolt is to assist with catalyst handling.

- Remove the housing access lid. Install a new high temperature gasket to seal the catalyst module to the housing. Depending upon the housing
design, the gasket may be a tadpole gasket or a flat gasket, and it may be installed on the housing or on the catalyst module itself.

- Lower the catalyst module into position being careful to seat the module and the gasket evenly. Secure the catalyst module in place with the retaining hardware that comes with the housing.
- Remove the threaded lifting eye bolt from the catalyst module.
- Inspect the access lid gasket and determine whether it is reusable.
- Position the access lid gasket. If installing a new gasket, form bolt holes in the gasket using an 1/8" punch.
- Position the access lid; install the provided bolts, lock washers, and nuts; torque as directed by the housing manufacturer.
- Inspect all test ports in the exhaust system to ensure they are plugged.
- Verify that an over-temperature protection device is installed and operational. It is recommended that devices be installed upstream and downstream of the catalyst. A high-temperature limit shutdown controller is required for the downstream device and should be positioned 6 to 12 inches downstream of the catalyst. The trip point should be set to 1250°F.

NOTE - Upon completing the catalyst installation, operate the engine at normal load/speed for a minimum of 1 hour and re-torque access lid fasteners as directed by the housing manufacturer.

7. SAFETY CONSIDERATIONS

Always use caution when working around the system during a shutdown period. Any time the system is not in operation because of the need to perform maintenance work, use the appropriate equipment lockout measures.
The ADCAT™ 3-WAY (NSCR) catalyst system operates in the engine exhaust stream at high temperatures. High temperatures pose a hazard to workers and make it mandatory that personnel be protected against injury. Do not attempt to work around the catalyst system if temperatures exceed 110°F. If the system has shut down because of a high temperature or any other reason, pay particular attention to hot surfaces and make sure there is adequate area ventilation. This is especially important when inspecting, removing, or installing catalyst. If necessary, use a ventilation fan to keep fresh air flowing through the system during inspection, removal, or installation. All appropriate OSHA confined space safety procedures, as well as all local and company procedures should be followed at all times.

- Follow all appropriate OSHA and plant safety procedures at all times, including equipment lockout / tag out, proper personal protection and confined space entry procedures.
- Provide adequate ventilation.
- Wear leather gloves when handling catalyst modules. Metal edges of the modules could be sharp and can cut and bruise.
- Wear safety glasses with side shields or goggles when installing or removing modules from the frame. Protruding threading studs on the housings could be at eye level.
- Wear safety shoes and a hard hat when appropriate for the site and the nature of the work being done.
- When handling heavy catalyst modules or working around catalyst housings that present awkward handling positions, use a lifting fixture and the element eyebolt to assist with loading/unloading.
- Precautions should be taken to prevent injury from falling objects from work occurring overhead.
• Review the operation of the ADCAT™ NSCR catalyst system with the plant safety officer before starting the unit. Any suggestions and additions should be added to those instructions.

All those involved in the operation of the ADCAT™3-Way (NSCR) Catalyst system should read and understand the complete operating instructions before starting the system. Safety meetings of all those involved with the system should be held periodically in conjunction with housekeeping reviews.

8. OPERATION LOG
To maintain compliance with warranty provisions, process operating logs must be maintained. These operating logs are to contain record of the operating conditions of the system such as:

• date of catalyst installation,
• cumulative operating hours on the catalyst,
• engine load versus time,
• catalyst inlet temperature over time,
• oil type and consumption rate,
• fuel analysis (including sulfur and metals like arsenic),
• AFRC type and settings,
• history of backfires and misfires,
• emission test results, etc.

The conditions are to be recorded on a regular basis. These process operating logs shall be available to EmeraChem at all times during the warranty period.

9. CATALYST DEACTIVATION & MAINTENANCE
There are conditions that will deactivate or destroy the catalyst. Understanding how a catalyst deactivates, and avoiding those conditions, will ensure maximum performance and service life from the catalyst.

9.1. Catalyst Inspections
The catalyst should be physically inspected at 6 to 12 month intervals for gas-fired systems with low loading of exhaust gas particulate and low oil consumption rate. Based upon experience, monthly inspections may be necessary for systems with high oil consumption, fuel containing high sulfur or other catalyst contaminants, and/or or prone to misfires and over-temperature events.

Carbon fouling is evident by a soft, sooty black deposit on the catalyst. These carbon deposits will eventually restrict flow and increase back pressure. They will also mask the active surface area of the catalyst resulting in degraded emission performance and reduced exothermic temperature rise. These carbonaceous deposits could ignite on the catalyst surface during an engine misfire. Carbon fouling originates from an overly rich air-fuel ratio.

Ash fouling is evident by a grayish-white powdery deposit on the catalyst that could accumulate to the point of plugging substrate cells. These ash deposits will eventually restrict flow, increase back pressure, mask the active catalyst surface area, and reduce emission performance. Ash fouling originates from an engine oil with high sulfated ash content, and can be exacerbated by an overly lean air-fuel ratio.

Oil fouling is evident by dark brownish-black coating on the catalyst and possibly the odor of crankcase oil. These oil deposits will eventually mask the active catalyst surface area and degrade performance, restrict air flow and increase
back pressure, and cause high temperature alarms and shutdowns. Oil fouling originates from too much lube oil entering the engine exhaust gas.

Over-temperature often occurs within the core of the catalyst and may not be evident until damage is severe. Possible indications may range from a clean white, powdery appearance, to small pin-holes in the foil near the leading edge, to catastrophic incineration of the catalyst module. Over-temperature conditions originate in the engine from misfires, sticking exhaust valves, excessively lean air-fuel ratio, and other engine causes.

9.2. Catalyst Masking
The catalyst elements in reciprocating engine applications operates in an environment with known contaminants and potential elevated temperatures that will gradually decrease the destruction and removal efficiencies (DRE). Under normal operating conditions, the DRE will gradually decrease as a result of masking – a process by which contaminants deposit and accumulate on the catalyst surface. Eventually, the accumulation covers the active surface area of the catalyst and prevents the exhaust gas from contacting the active precious metal sites. Even though the deposit may be too thin to effect pressure drop, the performance will decline. Sulfated ash masking is the most common form of masking and is a product of the combustion of lubrication oil. Masking is often a reversible process in which the DRE can be restored with a chemical wash process. EmeraChem offers chemical analysis and chemical washing services upon request.

CAUTION: Unapproved washing processes or chemicals can cause irreversible damage to the catalyst, and will void the warranty. To minimize the frequency of chemical catalyst washes, the engine should be operated with low ash (<0.5%
wt) crankcase lubrication oil. Periodic emission testing is required to monitor, and record the catalysts DRE to determine the catalyst wash frequency. Typical catalyst wash frequency occurs within 12 —24 months of continuous operation, and can vary depending on many factors including, but not limited to, oil type and consumption rate, exhaust temperature, engine load, catalyst sizing and required DRE.

9.3. Catalyst Fouling

Fouling occurs when solids physically plug the cells of the substrate and block gas flow through the catalyst. This can be caused by large particulate material in the gas stream or by deposition of an inorganic component (e.g. silica) and organic components (e.g. ash, carbon) as a by-product of combustion. Although the catalyst reduction performance may not be affected, disruption of exhaust flow through the catalyst causing high engine backpressures will degrade engine performance and may result in engine stalls and high fuel consumption. When possible, the source of the fouling agent should be identified and corrected. A fouled catalyst can usually be restored by vacuuming or by chemical washing. **CAUTION:** Do not use high pressure compressed air to blow off the catalyst module. Erosion of the catalyst coating may result.

9.4. Catalyst Poisoning

Certain materials can react with the active catalyst surface to form compounds or alloys that are not catalytically active. For example, lead and phosphorous can form alloys with platinum, forming a catalytically inactive metal, and reducing the performance of the catalyst. This process is usually irreversible – little can be done to rejuvenate a poisoned catalyst and replacement is usually necessary. Before replacing the catalyst identify the poison contaminant(s) and eliminate the sources.
Known catalyst poisoning agents, that can cause irreversible loss of catalyst activity, include lead, mercury, arsenic, antimony, sodium, potassium, lithium, zinc, copper, tin, iron, nickel, chrome, silicon, phosphorous and fluorine. Content of these contaminants, in the catalyst, must not singularly or collectively accumulate to a level that exceeds 350mg/m³ or 10 mg/ft³ of catalyst. Common sources of poisoning agents include, fuel (landfill gas, digester gas, refinery gas, arsenic-laden natural gas), lubrication oil, coolant, anti-seize, RTV silicon and airborne contaminants. EmeraChem offers analytical chemical services to identify and quantify the presence of catalyst poison compounds.

9.5. Catalyst Thermal Deactivation
Under normal engine operation, the catalyst exothermic temperature rise is 50 - 75°F for three-way catalysts; and 10 - 25°F for oxidation catalysts. Maximum post-catalyst temperature is 1250°F. In the event of a misfire, excessive concentrations of hydrocarbons and air generated from the cylinder(s) can lead to irreversible catalyst damage, if not quickly corrected. Misfire(s) forces the catalyst into an uncontrolled combustion mode, in which the catalyst combusts all the hydrocarbons the exhaust oxygen will support. The net result is an exothermic reaction elevating the catalyst temperature above the normal operating range, and sintering of the catalyst. Once sintering has occurred, catalyst pore volume and internal surface area a permanently lost and precious metal sites are permanently lost.

Note that even if the engine exhaust temperature is within the catalyst operating specification, if excessive unburned fuel reaches the catalyst, a large exotherm could occur within the catalyst itself, raise the catalyst core temperature, and sinter the catalyst element.
Note: A single, continuous misfire on a V-12 natural gas engine can increase the catalyst temperature by 350°F which, if left uncorrected, could cause irreversible damage to the catalyst's alumina washcoat, and result in permanent performance deterioration. In severe cases, misfire(s) can cause exhaust temperatures to exceed 2500°F, and result in catastrophic failure of the catalyst substrate.

9.6. Catalyst Cleaning
Loss of performance or an increase in pressure drop or temperature rise across the unit may indicate the need to clean the catalyst. The frequency and best procedure for cleaning will depend upon the nature and concentration of fouling or masking agents in the exhaust gas stream. Testing (available from EmeraChem) may be required to find the best procedure and frequency for a particular installation. Under normal operating and maintenance conditions an element may require cleaning every 12 to 24 months.

The most effective and least damaging method of cleaning catalyst is with chemical washing. Chemical washing has been shown to remove ash and chemical contaminants deposited by fouling and masking mechanisms. EmeraChem offers a proprietary 4-step recirculation process using alkaline and acidic solutions.

Vacuuming in the direction opposite the normal flow through the catalyst can often remedy fouling, especially by particulate trapped from the gas stream. Vacuuming may be possible with the catalyst in place if there is sufficient access room.
Blowing the catalyst clean is not recommended because of the potential to erode the catalyst coating off the substrate with the use of high pressure air, or contaminate the catalyst with oil from an air compressor.

10. TROUBLESHOOTING
The operator must understand the important relationship between the engine, the AFRC, and catalytic reactor to diagnose emission related problems. The ability of the catalyst to perform at the permitted compliance level is directly dependant on the composition and temperature of the engine exhaust. Although an engine need not be in new condition, it must (at a minimum) meet design specifications as detailed by the engine OEM.

10.1. Air Fuel Ratio Controller Issues
Pre-catalyst emissions of oxygen greater than 0.5% and CO less than 3800 ppmv indicates that emissions are too lean for sustainable NOx and CO control. Likewise, pre-catalyst emissions of oxygen less than 0.3 % and CO greater than 6500 ppm indicates that emissions are too rich for sustainable NOx and CO control. Adjusting the AFRC to obtain pre-catalyst emissions between 3800-6500 ppm for CO, 2300-3000 for NOx and between 0.3-0.5% oxygen should maintain a stable condition for simultaneous control.

10.2. Engine Related Issues

10.2.1. Ignition System Misfire
An ignition misfire will cause cylinders to release unburned hydrocarbons and air into the exhaust system. A misfire is generally indicated by an abnormal level of CO spikes and hydrocarbons greater than 2000 ppm and oxygen greater than 0.5%.
10.2.2. Leaking Exhaust Valve
Leaking exhaust valves will allow combustion products to prematurely escape the cylinder. General indications of a leaking exhaust valve include elevated levels of CO in the engine’s exhaust.

10.2.3. Low Compression
Low cylinder compression will cause combustion instability resulting in higher CO levels and noticeable swings in the EGO sensor output.

10.2.4. Low Load
Reduced engine load (< 50%) produces characteristics very similar to low compression, because the volumetric efficiency is reduced. Low load is indicated by high vacuum in the intake manifold for naturally aspirated engines, or no power boost on turbocharged engines. Catalyst efficiency is reduced due to unstable combustion and low exhaust temperatures.

10.2.5. Exhaust Leak
Air infiltration into the exhaust system will affect the EGO sensor output, diminishing the AFRC’s performance. Check all exhaust components for leaks including turbo boot, expansion joints, flanges and sample ports.

10.2.6. Detonation
Detonation can be attributed to improper ignition timing, an over loaded engine condition, lean air-fuel ratio, or high BTU fuel gas.

10.2.7. Improper crankcase routing
If crankcase ventilation is designed to be routed to the exhaust, vent must be routed downstream of the catalyst.

11. REVISIONS AND CHANGES
EmeraChem reserves the right to amend the Operation and Maintenance Manual as necessary. Such amendments to the Operation and Maintenance Manual shall not be applied retroactively in determining the customer’s warranty compliance.